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Abstract

The form factors for the transitions πγ, ηγ, η′γ and ηcγ are ana-
lyzed within the modified perturbative approach in which quark trans-
verse degrees of freedom are retained. The results for the form factors
are compared to experiment in detail. As compared to previous calcu-
lations within the same approach only little modifications of the me-
son distribution amplitudes are required in general in order to achieve
agreement with experiment. Only for the πγ form factor a strong
contribution from the second Gegenbauer term is found. It also com-
mented on the case of two virtual photons and on the transition form
factors in the time-like region.

December, 12 2010

1 Introduction

The simplest exclusive observable is the πγ transition form factor, Fπγ . It has
been shown [1] that its behavior for large photon virtuality, Q2, is determined
by the operator product expansion of the product of two electromagnetic
currents near the light cone. The only soft physics information required in
the calculation of the form factor is the pion wave function. It is however
theoretically not understood what large Q2 means or, in other words, at
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which value of Q2 this collinear factorization approach can be applied. This
is still to be decided by comparison with experiment.

In 1995 the CLEO collaboration [2] showed the first data on the πγ tran-
sition form factor at fairly large values of Q2, actually up to 8 GeV2. These
data provoked an enormous theoretical activity. It seemed that collinear
QCD provides a large contribution to the transition form factor. The data
lie only about 20% below the asymptotic limit of that form factor, namely
Q2Fπγ →

√
2fπ where fπ (= 131 MeV) is the pion’s decay constant. Next-to-

leading order (NLO) corrections [3] account for about a half of the difference
between the asymptotic results and the data. For the remaining difference
several explanations were proposed: a pion distribution amplitude slightly
different from the asymptotic one (ΦAS = 6x(1 − x)), low renormalization
scales which enhance the NLO corrections, power corrections or quark trans-
verse momenta to mention a few mechanisms. Since all these mechanisms
have to provide only little effects the πγ transition form factor was believed
to be the theoretically best understood exclusive observable.

Recently, this believe has been ruined. The BaBar collaboration [4] has
measured the πγ transition form factors up to about 35 GeV2. While these
data agree with the CLEO data [2, 5] below 8 GeV2 they reveal an expect-
edly large rise towards large Q2. This behavior is in dramatic conflict with
dimensional scaling and turned previous calculations obsolete. As the CLEO
data in 1995 the BaBar data renewed the interest in this quantity and many
paper papers have already been devoted to its theoretical analysis, e.g. [6] -
[13].

Here, in this article, it is proposed to employ the modified perturbative
approach (MPA) invented by Sterman and collaborators [14, 15]. This ap-
proach which bases on k⊥ factorization, has been used before in the analysis
of the CLEO data [16, 17]. It will be shown below that a good fit to the BaBar
data can be achieved with this approach, only a few higher order terms in the
Gegenbauer representation of the distribution amplitudes have to be taken
into account now. Arguments will also be given why in the Q2 range covered
by the CLEO data the simple asymptotic distribution amplitude suffices for
a fair fit to the data. In the next section the MPA will be described in some
detail and its properties discussed. Next, in Sect. 3, the actual analysis of
the data on the πγ form factor will be presented and the results compared
with other theoretical approaches. Sect. 4 is devoted to the analysis of the ηγ
and η′γ transition form factors which have been measured by CLEO [5] and
the L3 collaboration [18] previously and by BaBar [19] recently. The Babar
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data [20] on the ηcγ transition form factor will be analyzed in Sect. 5 briefly.
Comments on the case of two virtual photons and on the form factors in the
time-like region will be presented in the respective Sects. 6 and 7 before the
papers ends with a summary (Sect. 8). Details of the Sudakov factor will be
presented in an Appendix.

2 The modified perturbative approach

An alternative to the usual collinear factorization is the transverse-momentum
(k⊥)-factorization. For hard exclusive processes this type of factorization has
been proposed by Sterman and collaborators [14, 15]. Further arguments for
the validity of k⊥-factorization are given in [21] for the case of the transi-
tion form factors. Nevertheless a rigorous proof of k⊥-factorization does not
exist as yet. The basic idea of k⊥-factorization is to retain the quark trans-
verse degrees of freedom in the hard scattering. This however implies that
quarks and antiquarks are pulled apart in the transverse-configuration or
impact-parameter space. The separation of color sources is accompanied by
the radiation of gluons. Based on previous work by Collins et al [22, 23, 24]
the corrections to the hard scattering process due to gluon radiation have
been calculated in Ref. [14] in axial gauge using resummation techniques and
having recourse to the renormalization group. These radiative corrections
comprising re-summed leading and next-to-leading logarithms which are not
taken into account by the usual QCD evolution, are presented in the form of
a Sudakov factor in the impact-parameter plane.

The k⊥-factorization combined with a Sudakov factor is termed the MPA.
Its advantage is that the end-point regions where one of the parton momen-
tum fractions tends to zero, are strongly damped. Large contributions to
the form factor accumulated in the soft end-point regions would render the
use of perturbation theory inconsistent. As has been pointed out by Isgur
and Llewellyn-Smith [25] this is frequently the case in collinear factorization
at experimentally accessible values of momentum transfer, typically a few
GeV2. Another advantage of the MPA is that the renormalization scale,
µR, can be chosen to be momentum-fraction dependent in order to elimi-
nate large logarithms from higher-order perturbative corrections. Eventual
αs-singularities are canceled by the Sudakov factor without introducing ad-
ditional ad hoc cut-off parameters as for instance a parton mass. Thus, the
MPA provides well-defined expressions for form factors and amplitudes of
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Figure 1: Lowest order Feynman graphs for the Pγ transition form factor.

hard scattering processes: the perturbative contributions can be calculated
in a self-consistent way, even for momentum transfers as low as a few GeV2.

According to [16, 17] the form factor for a transition from a photon to a
pseudoscalar meson (P) reads

FPγ(Q
2) =

∫

dx
d2b

4π
Ψ̂P (x,−b, µF )T̂

P
H (x,b, Q, µR)e

−S(x,b,Q,µR,µF ) , (1)

within the MPA. Since the Sudakov exponent S is given in the impact-
parameter (b) space, see App. A, it is convenient to work in that space which
is canonically conjugated to the k⊥-space. In the convolution formula (1) T̂H

is the Fourier transform of the momentum-space hard scattering amplitude
TH evaluated to lowest order perturbative QCD from the Feynman graphs
displayed in Fig. 1 but taking into account quark transverse momenta

T P
H =

4
√
6CP

xQ2 + k2
⊥

, (2)

Here CP is a charge factor. For instance, for the pion it reads Cπ = (e2u −
e2d)/

√
2 where ea denotes the charge of a flavor-a quark in units of the positron

charge. The Fourier transform of (2) is

T̂ P
H =

2
√
6CP

π
K0(

√
xQb) , (3)

where the Fourier transform is defined by

f̂(b) =
1

(2π)2

∫

d2k⊥ exp [−ib · k⊥]f(k⊥) . (4)

The function K0 denotes the modified Bessel function of order zero.
Another item in (1) is Ψ̂P , the light-cone wave function of the meson P

in the impact-parameter space. In the original version of the MPA [15] this
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wave function is assumed to be just the meson distribution amplitude ΦP . As
argued in [15] the Sudakov factor e−S can be viewed as the perturbatively
generated transverse part of the wave function. For low and intermediate
values of Q2, however, the non-perturbative intrinsic b- or k⊥-dependence of
the light-cone wave function cannot be ignored as has been pointed out in
[26]. The inclusion of the transverse size of the meson extends considerably
the region in which the perturbative contribution to the form factor can be
calculated. As in [17, 26] the wave function is parameterized in the form

Ψ̂P (x,b, µF ) = 2π
fP√
6
ΦP (x, µF ) exp

[

− xx̄b2

4σ2
P

]

. (5)

The distribution amplitude, ΦP , possesses a Gegenbauer expansion

ΦP (x, µF ) = ΦAS



1 +
∑

n=2,4,···

an(µ0)
(αs(µF )

αs(µ0)

)γn
C3/2

n (2x− 1)



 , (6)

where the evolution of the expansion parameters an from an initial scale,
µ0, to the factorization scale, µF , is controlled by the anomalous dimensions
(n ≥ 0)

γn+2 = γn + 4
CF

β0

(2n+ 5)(n2 + 5n+ 5)

(n + 1)(n+ 2)(n+ 3)(n+ 4)
. (7)

Here, γ0 = 0, CF = 4/3 and β0 = 11 − 2/3nf , nf is the number of active
flavors. For the cases of interest in this work the distribution amplitude is
symmetric under the replacement of the momentum fraction x by x̄ = 1−x.
This symmetry is already taken into account in (2). The transverse size
parameter σP being related to the r.m.s transverse momentum by (with a0 =
1)

〈k2
⊥
〉 =

6π2f 2
P

Pqq̄

∫

dxx2x̄2
∑

n=0,2,···

[

a2n(C
3/2
n )2 + 2anan+2C

3/2
n C

3/2
n+2

]

=
π2f 2

P

5Pqq̄

[

1− 6

7
a2(1− 2a2)−

150

77
a4(a2 −

35

26
a4) + . . .

]

(8)

For later use the probability of the meson’s valence Fock state is also quoted:

Pqq̄ =
∫

dx
d2b

4π
| Ψ̂P (x,b) |2= 3π2f 2

Pσ
2
P

∑

n=0,2,···

a2n
(n+ 1)(n+ 2)

2n+ 3
. (9)
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The requirement Pqq̄ ≤ 1 leads to bounds on the Gegenbauer coefficients or
strictly speaking, on the products anσP

| anσP |≤ 1

πfP

√

2n+ 3

3(n+ 1)(n+ 2)
. (10)

For instance, if σP = 0.5 (1.0) GeV−1 at the initial scale µ0 one finds

a2(µ0) ≤ 2.14 (1.07) , a4(µ0) ≤ 1.70 (0.85) . (11)

The Sudakov exponent S in (1) which comprises the characteristic dou-
ble logarithms produced by overlapping collinear and soft divergencies for
massless quarks, is given in App. A. The impact parameter b which repre-
sents the transverse separation of quark and antiquark, acts as an infrared
(IR) cut-off parameter 1 [22, 23, 24]. Thus, 1/b in the Sudakov exponent
marks the interface between the non-perturbative soft momenta which are
implicitly accounted for in the hadron wave function, and the contributions
from soft gluons, incorporated in a perturbative way in the Sudakov factor.
Obviously, the IR cut-off serves at the same time as the gliding factorization
scale

µF = 1/b (12)

to be used in the evolution of the wave function. In accord with this interpre-
tation the entire Sudakov factor is continued to zero whenever b > 1ΛQCD.
In this large-b region the wavelength of the radiative gluon is larger than
1/ΛQCD. Because of the color neutrality of the hadron such gluons cannot
resolve the hadron’s quark distribution; hence radiation is damped. Soft glu-
ons with wavelength larger than 1/ΛQCD are therefore to be excluded from
perturbation theory; they have to be absorbed into the soft wave function.

Radiative corrections with wavelengths between the IR cut-off and the
upper limit

√
2/ξQ yield to suppression through the Sudakov factor as is

evident from the integration limits in (A.2) (ξ is either x or 1 − x). Gluons
with even shorter wavelengths are regarded as hard ones which are considered
as higher-order perturbative corrections of the hard scattering and, hence,
are not part of the Sudakov factor. For that reason, the Sudakov function

1For a more complicated system like the proton’s electromagnetic form factor, there are
several b’s. In order to cancel the αs singularities the b’s have to be chosen appropriately
[27].
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exp[�s(�l; ~bl; Q)]1

01 0 1 0
Figure 2: The exponential of the Sudakov function s(ξl, b̃l, Q) vs ξl = ξ and
b̃ = b for Q = 30ΛQCD. The hatched area indicates the hard scattering
region. The plot is taken from [27].

s(ξ, b, Q) which is defined in (A.6) and is related to S according to (A.1), is
set equal to zero [15] whenever

ξ ≤
√
2

Qb
. (13)

In Fig. 2 the exponential of the Sudakov function exp[−s(ξ, b, Q)] for Q =
30 ΛQCD is displayed. The properties of the Sudakov function lead to an
asymptotic damping of any contribution except those from configurations
with small quark-antiquark separations, i.e. for lnQ2 → ∞ the limiting be-
havior of the transition from factors in collinear factorization emerges, for
instance, Fπγ →

√
2fπ/Q

2.
In a NLO calculation of the Pγ form factor or, say, in the case of the

electromagnetic pion form factor a momentum-fraction dependent renormal-
ization scale leads to a singular αs in the limit µR → ΛQCD. This singularity
is canceled in the MPA: whenever αs tends to infinity the Sudakov factor e−S

rapidly decreases to zero. As one may suspect from Fig. 2 this does not seem
to be the case in the region determined by bΛQCD → 1 and simultaneously
ξ ≤

√
2ΛQCD/Q, where exp[−s(ξ, b, Q)] is fixed to unity. However, in this

region the other Sudakov function in (A.1), namely s(1 − ξ, b, Q), provides
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the required suppression. The logarithmic singularities [ln (1/(bΛQCD)
2]−γn

which arise from the evolution of the wave function and which become worse
with increasing Gegenbauer index are analogously cancelled by the Sudakov
factor.

In analogy to the case of the pion’s electromagnetic form factor [15] the
maximum of the longitudinal scale appearing in the scattering amplitude (2)
and the transverse scale

µR = max(
√
xQ, 1/b) , (14)

is chosen as the renormalization scale [16, 17]. Although to lowest order there
is no αs in the hard scattering amplitude for the Pγ transition form factor,
it nevertheless depends on µR. Indeed, as discussed above, the Sudakov
factor comprises the gluonic radiative corrections for scales between 1/b and
ξQ/

√
2. Hence, the latter scale specifies the onset of the hard scattering

regime.
Inserting the Gegenbauer decomposition (6) of the meson distribution

amplitude into (1) and integrating term by term one can write the Pγ tran-
sition form factor as

Q2FPγ = 6CPfP
∑

n=0,2,4...

an(µ0) Cn(Q2, µ0, σP ) (15)

The functions Cn incorporate the integrals over the product of the n-th Gegen-
bauer component of the meson wave function, the hard scattering amplitude
and the Sudakov factor as well as the change of the Gegenbauer coefficients
with the factorization scale. The evolution is worked out with the 1-loop
expression for αs using ΛQCD = 0.181 GeV and four flavors. This value
of ΛQCD is used throughout the paper except stated otherwise. In (15) µ0

merely acts as the scale at which the Gegenbauer coefficients of the distri-
bution amplitude are quoted; the transition form factor is independent of it.
Numerical results for the ratios Cn/C0 obtained under neglect of the intrinsic
transverse momentum (i.e. for σP → ∞), are shown in Fig. 3. A remarkable
property of the MPA is to be observed from this figure: For n > 0 and low
Q2 the Gegenbauer terms Cn are suppressed as compared to the lowest one,
C0. The strength of the suppression grows with the Gegenbauer index. A
closer inspection of the functions Cn in (15) reveals that the Sudakov fac-
tor in conjunction with the hard scattering amplitude provides a series of
power suppressed terms which come from the region of soft quark momenta
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(x, 1 − x → 0) and grow with the Gegenbauer index [28]. With increasing
Q2 the higher Gegenbauer terms become gradually more important. At very
large Q2 however the evolution of the expansion coefficients again suppresses
all Cn except C0. Asymptotically, one has C0 = 1 and Cn = 0 for n > 0 and
the asymptotic limit of the transition form factor emerges. The behavior of
the Cn in the MPA is very different from that in the collinear factorization
approach. To LO for instance one has

Ccoll
0 = 1 , Ccoll

n = [αs(µF )/αs(µ0)]
γn . (16)

0

0.3

0.6

0.9

1.2

Q2 [GeV2]

Cn/C0
n

2

4

6

8
10

1 2 3 5 10 20 30 50 100 300

Figure 3: The relative strength of the contributions from the n-th Gegenbauer
term to the Pγ form factor, scaled by the n = 0 term, at the scale 1.0 GeV.
Intrinsic k⊥ is omitted. (Colors online)

The intrinsic transverse momentum dependence of the wave function,
on the other hand, also provides a series of power suppressed terms but
these come from all x and do not grow with n [28]. These power corrections
superimposes those generated by the Sudakov factor in combination with the
hard scattering amplitude. For small values of the parameter σP the power
corrections from the intrinsic transverse momentum dependence are rather
strong and weaken the relative supppression of the higher Gegenbauer terms,
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in particular for small n. In exchange for this the C0 term itself increases more
sharply with rising Q2 towards the asymptotic limit C0 = 1.

This property of the MPA explains why the CLEO data on the πγ transi-
tion form factor [5] are well described by the asymptotic distribution ampli-
tude as shown in [17] (with σπ = 0.861 GeV−1, ΛQCD = 0.20 MeV), see Fig.
4. With the BaBar data [4] at disposal which extend to much larger values of
Q2 and do exceed the asymptotic limit

√
2fπ , higher Gegenbauer terms can

no more be ignored; they are now required for a successful description of the
transition form factors. What can be learned about the higher Gegenbauer
terms from the BaBar data will be discussed in the next sections.

3 Confronting with the BaBar data on πγ

transitions

Now, having specified all details of the MPA, one can analyze the πγ form
factor by inserting (5) and (6) into (1) and fitting the Gegenbauer coefficients
to the CLEO [5] and BaBar [4] data. From a detailed examination of the
data it becomes apparent that besides the transverse size parameter only
one Gegenbauer coefficient can safely be determined. If more coefficients are
freed the fits become unstable. The coefficients acquire unphysically large
absolute values between 1 and 10 (often in conflict with the bound (10)) and
with alternating signs leading to strong compensations among the various
terms. The reason for this fact is that the data show the tendency of a
sharp increase of the slope in the vicinity of Q2 ≃ 10 GeV2 while theory for
an > 0 provides a slowly decreasing slope. With large absolute values and
alternating signs of the coefficients a slightly increasing slope is produced for
a finite range of Q2.

Two fits are ultimately performed: for the first one the Gegenbauer coeffi-
cient a2 is fitted; for the second one a4 is freed but a2 is fixed at the face result
of a recent lattice QCD calculation [29]. Evolved to the scale µ0 = 2 GeV
with ΛQCD = 181 MeV, the lattice result [29] is a2(µ0) = 0.201± 0.114. All
other Gegenbauer coefficients are assumed to be negligible in the fits. The
results of the two fits are 2

σπ = 0.40± 0.06 GeV−1 , a2(µ0) = 0.22± 0.06 , χ2 = 34.1 , (17)

2The Gegenbauer coefficient an at a scale µ1 is obtained from the value quoted in (17)
or (18) by multiplying it with the factor [ln (µ2

0/Λ
2
QCD)/ ln (µ

2
1/Λ

2
QCD)]

γn .
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Figure 4: The scaled πγ transition form factor versus Q2 evaluated from fit
(18) (solid line). The dashed line represents the result given in [17] which is
obtained from the asymptotic distribution amplitude and σπ = 0.861 GeV−1

given. The dotted line is obtained from collinear factorization to NLO accu-
racy. Data taken from [4, 5]. (Colors online)

and with a2(µ0) = 0.20 [29],

σπ = 0.40± 0.06 GeV−1 , a4(µ0) = 0.01± 0.06 , χ2 = 34.2 , (18)

The fits are stable and have a sharp χ2 minimum. The minimal values of χ2

for the two fits are reasonable given that 28 data points forQ2 > 2.3 GeV2 are
included in the fits. The fit (17) yields a value for a2 that is in good agreement
with the lattice result [29] within errors. The fit (18) is shown in Fig. 4; the
fit (17) is practically indistinguishable from (18). At the largest values of Q2

the resultant form factor seems to be a bit small as compared to the BaBar
data. Partially responsible for this fact are the large fluctuations the BaBar
data exhibit; the fit compromises between all the data. At very large values
of Q2, not shown in Fig. 4, the theoretical result for the form factor, scaled
by Q2, flattens off with a broad maximum at about 200 GeV2 and decreases
subsequently towards its asymptotic value of

√
2fπ. The reason for the small

value of σπ in the present fits can easily be understood. The C2 and C4 terms
demanded by the BaBar data [4] at large Q2, also contribute at low Q2,
although to a lesser extent. Therefore, the C0-term with σπ = 0.861 GeV−1
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which fits nicely the low Q2 data, see Fig. 4, is to be reduced. The only
parameter available for this is however σπ.

In Ref. [30] it is argued that the decay π0 → γγ fixes the wave function
at k⊥ = 0 integrated over x. For the wave function (5) this constraint can
be turned into a result for the transverse size parameter [31]

σπ =
[

8π2f 2
π

∑

n=0,2,4...

an
]−1/2

. (19)

For the asymptotic distribution amplitude this constraint leads to the value
σπ = 0.861 GeV−1 used in [17]. The parameters given in (17), (18) violate
(19) plainly. Since it is however unclear at which scale the constraint (19)
holds the significance of this violation cannot be judged.

Also shown in Fig. 4 is a typical result of the collinear factorization ap-
proach to NLO accuracy (taking µF = µR = Q and, as an example, the
Gegenbauer coefficients of the fit (18)). Apparently the shape of that result
is in conflict with experiment. A change of the values of the Gegenbauer
coefficients or the addition of further coefficients with the proviso that large
negative coefficients are excluded, does not alter the shape but only the ab-
solute value of the form factor. Thus, the πγ transition form factor sets an
example of a simple exclusive observable for which collinear factorization is
insufficient for Q2 as large as 40 GeV2.

It is perhaps of interest to examine the role of the soft intrinsic transverse
momentum or b-dependence of the wave function further. Thus, one may
wonder whether or not a possible scale dependence of the transverse-size
parameter improves the fit. This scale dependence has been investigated
in [32] and found that σπ slowly decreases with increasing Q2. Employing
the numerical results given in [32] in the fit, one obtains results for the
form factor that are very similar to the ones presented in Fig. 4. As in most
applications of light-cone wave functions an approximately scale independent
transverse-size parameter is therefore assumed in this work for convenience.
If the transverse-size dependence in (5) is neglected which leads to the original
version of the MPA [15], a food fit to the form factor data cannot be achieved,
the results are too flat as compared to the data and the minimal χ2 is 155.
Hence, the b dependence of the wave function is an important ingredient of
the MPA as has been suggested in [26]. A b-dependence of the wave function
like

Ψ̂P ∝ exp [−b2/4σ2
π] (20)

12



leads to fits of similar quality as with (5). The obtained values of the Gegen-
bauer coefficients are slightly larger and have larger errors. Within these
errors they however agree with those quoted in (17), (18) within one stan-
dard deviation.

One may evaluate the probability (9) of the pion’s valence Fock state and
the r.m.s. value of k⊥ (8). From the parameters quoted in (17) and (18) one
finds Pqq̄ ≃ 0.06 and 〈k2

⊥
〉1/2 ≃ 710 MeV. These values appear to be plausible

at a low scale although, in view of the assumption of a scale-independent σπ,
they are to be taken with a grain of salt.

Since the integrations in (1) extend from x = 0 to 1 and from b = 0
to 1/ΛQCD the soft regions contribute to the form factor too. The decisive
question is how much. In order to investigate this issue a cut-off parameter
µc is introduced and any contribution to the form factor is set to zero if the
renormalization scale (14) is less than µc. The accumulation profile is then
defined by the ratio Fπγ(µc)/Fπγ(0). It is shown in Fig. 5 and reveals that in
the soft regions defined by small values of the renormalization scale (14), say,
less than 1 GeV, only small contributions are accumulated. The bulk of the
contributions to the transition form factor is generated in regions where the
renormalization scale is sufficiently large. Hence, within the MPA, the πγ
transition form factor can be considered as being calculated self-consistently.
This property holds down to values of the photon virtuality of about 2 GeV2.

Li and Mishima [10] also applied the MPA to the πγ transition form
factor and achieved a reasonable fit to the CLEO [5] and BaBar data [4]. In
contrast to the present work the flat distribution amplitude [6]

Φπ ≡ 1 (21)

is used. It is combined with a Gaussian b-dependence as in (5) in a kind of
wave function. However, this product cannot be considered as a proper wave
function in so far as it is not normalizable, see (9) 3. It is furthermore argued
in [10] that the distribution amplitude (21) is accompanied by a threshold
factor that represents resummed double logs αs ln

2 x and αs ln
2 (1− x) arising

from the end-point singularities which occur for the flat distribution ampli-
tude in collinear factorization. The threshold factor combined with the flat

3The Gegenbauer series of the flat distribution amplitude truncated at n0 is however
normalizable provided n0 is not too large. Alternatively one may use (20) which leads to
a normalizable wave function and provides similar results for the transition form factor if
the transverse size parameter is appropriately chosen.
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Figure 5: Left: The accumulation profile of the πγ transition form factor in
the space (solid line) and time-like (dashed line) regions versus a cut-off of the
renormalization scale at Q2 = 10 GeV2 evaluated for fit (18). The absolute
value of the time-like form factor is displayed. (Colors online). Right: The
effective power of the distribution amplitude (22) compared to the power of
the threshold factor in [10] at the scale µ.

distribution amplitude can be viewed as an effective distribution amplitude
of the type

Φr
π =

Γ(2 + 2r)

Γ2(1 + r)
[xx̄]r . (22)

According to [10], r is about 1 for low Q2 and small for Q2 ≃ 40 GeV2. This
particular Q2-dependence of the power r generates the increase of the form
factor required by the BaBar data [4]: At low Q2 the effective distribution
amplitude is the asymptotic one implying small values of the transition form
factor while, at large Q2, the effective distribution amplitude is close to the
flat one and hence leads to much larger values of the form factor. It is to be
stressed that QCD evolution of the proper distribution amplitude, Φπ = 1,
is omitted in [10]. Since the gliding factorization scale µF is an essential part
of the MPA this seems to be a problematic assumption.

Eq. (22) defines a family of power-like distribution amplitudes. It includes
the limiting cases of the asymptotic distribution amplitude for r = 1 as
well as the flat distribution amplitude (21) for r = 0. Also the square root
distribution amplitude proposed in [33] belongs to this family. By comparison
with the Gegenbauer series (6) of (22) and its evolution one can show [28]
that the distribution amplitude (22) approximately remains power-like under
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evolution, r → r(µ) over a large range of the scale.
One may examine the power-like distribution amplitude (22) by fitting

the transverse size parameter as well as the power r(µ0) to the data on the
πγ form factor. One finds (µ0 = 2 GeV)

σπ = 0.40± 0.05 GeV−1 r(µ0) = 0.59± 0.06 , χ2 = 34.4 . (23)

The quality of this fit to the data on the πγ form factor is similar to that
presented in [10]. In Fig. 5 the power r(µ) for the fit (23) is compared to the
scale dependence of the threshold factor used in [10] (in this work the power
is set to unity for µ2 <∼ 4 GeV2). As can be seen from Fig. 5 the distribu-
tion amplitude (22) exhibits the usual evolution behavior, it monotonically
evolves into the asymptotic one, ΦAS, for µ → ∞. On the other hand, the
scale dependence of the threshold factor or the effective distribution ampli-
tude advocated for in [10], is drastically different. It is also to be stressed
that in [10] the threshold factor is evaluated at the scale Q and not at the
factorization scale µF although it is to be understood as part of the wave
function.

The first few Gegenbauer coefficients of the power-like distribution am-
plitude (23) are compared to those from the fits (17) and (18) in Tab. 1.
The first Gegenbauer coefficients of the flat and the square root distribution
amplitude advocated for in [33], are also displayed in Tab. 1 for comparison.
The comparison is made at a scale of 1 GeV which seems to be a plausible
value for soft wave functions like (21). While the Gegenbauer coefficients
of the flat distribution amplitude are generally larger than those quoted in
(17) or (18), are the coefficients of (23) and the square root distribution
amplitude smaller. A wave function like Ψ = c exp [−b2/4σ2

π] to which the
flat distribution amplitude is associated, can be used in a MPA calculation
without entailing infrared singularities even if evolution is ignored. On the
other hand, the use of (21) within the collinear factorization approach leads
to an infrared-singular result which necessitates a regularization prescription
as for instance the insertion of a mass parameter into the denominator of
the quark propagator [7]. Such a regularization prescription typically al-
ters the asymptotic behavior of the scaled form factor drastically: instead of
Q2 Fπγ → const. the scaled form factor increases logarithmically [6, 7, 8].
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a2 a4 a6

(17) 0.27± 0.07 0 0

(18) 0.25 0.01± 0.06 0

(23) 0.14 0.05 0.03

(21) 0.39 0.24 0.18
√
xx̄ 0.15 0.06 0.03

Table 1: Lowest Gegenbauer coefficients for various distribution amplitude
at the scale 1 GeV.

4 Generalization to the η and η′γ form factors

The analysis of the πγ transition form factor within the MPA can straight-
forwardedly be extended to the cases of the ηγ and η′γ ones [34, 35]. These
transition form factors may be expressed as a sum of the flavor-octet and
flavor-singlet contributions (P = η, η′)

FPγ = F 8
Pγ + F 1

Pγ . (24)

As is the case for the πγ form factor the functions F i
Pγ (i = 1, 8) are pro-

portional to the constants f i
P assigned to the decays of meson P through the

SU(3)F octet or singlet axial-vector weak currents which are defined by the
matrix elements

〈0 | J i
µ5 | P (p)〉 = if i

P pµ (25)

Adopting the general parameterization [36]

f 8
η = f8 cos θ8 , f 1

η = −f1 sin θ1 ,

f 8
η′ = f8 sin θ8 , f 1

η′ = f1 cos θ1 , (26)

one can show [37] that on exploiting the divergences of the axial-vector cur-
rents - which embody the axial-vector anomaly - the mixing angles, θ8 and
θ1, differ considerably from each other and from the state mixing angle, θ.
In [37] the mixing parameters have been determined:

f8 = 1.26 fπ , f1 = 1.17 fπ ,

θ8 = −21.2◦ , θ1 = −9.2◦ . (27)
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Assuming particle-independent [34, 37] octet and singlet wave functions,
Ψ8 and Ψ1 , which are parameterized as in (5) with the respective decay
constants f8 and f1 instead of fπ, one can cast the transition form factors
into the form

Fηγ = cos θ8 F
8 − sin θ1 F

1

Fη′γ = sin θ8 F
8 + cos θ1 F

1 . (28)

The charge factors in (3) read (with P = 1, 8)

C8 = (e2u + e2d − 2e2s)/
√
6 , C1 = (e2u + e2d + e2s)/

√
3 . (29)

The asymptotic behavior of the form factors is

Q2F 8 →
√

2

3
f8 , Q2F 1 → 4√

3
f1 . (30)

It is to be noted that the singlet-decay constant is renormalization-scale
dependent [36]:

µ
df1
dµ

= γA(µ) f1 (31)

where the anomalous dimension is

γA = −nf (αs(µ)/π)
2 . (32)

Since the anomalous dimension controlling this scale dependence is of order
α2
s , it leads to tiny effects. In fact, if the value of f1 quoted in (27) is to be

understood as being valid at, say, the scale ≃ 1 GeV, its asymptotic value is
13% smaller; over the range of available data it only decreases by less than
2%. The scale dependence of f1 is therefore discarded for convenience.

It is to be stressed that to NLO of the hard scattering there is also a
contribution from the glue-glue Fock component of the mesons to the singlet
form factor [38, 39]. In the MPA analysis performed in this work the glue-glue
Fock component does not contribute directly but only through the matrix of
the anomalous dimensions and the mixing of the singlet quark-antiquark with
the glue-glue distribution amplitude. It is assumed here that the Gegenbauer
coefficients of the glue-glue distribution amplitude are zero at a low scale
of order 1 GeV. Hence, the quark-antiquark distribution amplitude evolves
with the eigenvalues γ(+)

n of the anomalous dimension matrix [39]. The values
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Figure 6: The octet and singlet form factors. Dotted lines represent the
asymptotic behavior (30), the dashed lines the results obtained in [34]. The
solid lines represent the new fit (33). Data taken from [5, 19]. (Colors online)

of γ(+)
n practically fall together with those of γn, the anomalous dimension

of the octet distribution amplitude, see (7). For instance, γ
(+)
2 = 0.639 while

γ2 = 2/3 for four flavors.
The two form factors F 8 and F 1 can now be evaluated from (1) and (3)

in full analogy to the πγ transition form factor. The data on F 8 and F 1

are extracted from the CLEO [5] and BaBar [19] data using (28). As for
the πγ form factor only the transverse size parameter and one Gegenbauer
coefficient for each wave function can be determined. The best fit is obtained
with the parameters (µ0 = 2 GeV):

σ8 = 0.84± 0.14 GeV−1 , a82(µ0) = −0.06± 0.06 ,

σ1 = 0.74± 0.05 GeV−1 , a12(µ0) = −0.07± 0.04 . (33)

The values of χ2 are 15.0 and 14.1 for the octet and singlet cases, respectively
(for 16 data points in each case). The probabilities of the singlet and octet
wave functions are 0.24 and 0.19, respectivly. The corresponding r.m.s. k⊥-
values are 390 and 440 MeV.

In Fig. 6 the results of this fit are compared to the data on F 8 and F 1.
The quality of this fit is very good. In contrast to the πγ case the data on
both F 8 and F 1 lie below the asymptotic results (30). The combination of
these two form factors into the physical ones according to (28) leads to the
results which are shown in Fig. 7. Again very good agreement with the data
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Figure 7: The scaled ηγ and η′γ transition form factor versus Q2. Data taken
from [5, 18, 19]. For notations refer to Fig. 6. (Colors online)

is to be observed. Also shown in Figs. 6 and 7 are the results obtained in
[34] which have been evaluated from the asymptotic distribution amplitudes
(with σ1 = σ8 = 0.861 GeV−1). The octet as well as the ηγ form factors of
[34] are in very good agreement with experiment while the results for F 1 and
the η′γ form factor are somewhat too large.

The form factors scaled by their respective asymptotic behaviors are dis-
played in Fig. 8. All the form factor ratios for the light mesons behave
similar although not identical. Asymptotically they all tend to 1. The πγ
form factor approaches 1 from above, the other ones from below. The ap-
proach to 1 is a very slow process; even at 500 GeV2 the limiting behavior
has not yet been reached. It is also evident from Fig. 8 that, forced by
the BaBar data, there are strong violations of SU(3)F flavor symmetry in
the groundstate octet of the pseudoscalar mesons at large Q2. The differ-
ence between the πγ and the ηγ or more precisely the η8γ form factors is
larger than the difference between their respective decay constants. In other
processes involving pseudoscalar mesons, e.g. two-photon annihilations into
pairs of pseudoscalar mesons [40, 41], such large flavor symmetry violations
have not been observed. Below 8 GeV2, i.e. in the range of the CLEO data,
flavor symmetry breaking is much milder. The ηcγ transition form factor
which is also shown in Fig. 8, behaves very different. This form factor will
be discussed in the next section.
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5 The case of the ηc

The essential difference of the ηcγ transition form factor to the other three
form factors is the large mass of the ηc (Mηc) or that of the charm quark (mc).
They constitute a second large scale in addition to the virtuality of one of
the photons. The masses cannot be neglected in a perturbative calculation in
constrast to the case of the light mesons where quark and hadron masses do
not play a role. Despite this the ηcγ form factor is to be calculated from (1)
but the hard scattering amplitude to lowest order perturbative QCD reads
[42]

TH =
4
√
6 e2c

xQ2 + (1 + 4xx̄)m2
c + k2

⊥

. (34)

The symmetry of the problem under the replacement of x by x̄ is already
taken into account in (34). Due to the involved second large scale in the
problem the ηcγ form factor can be calculated even at Q2 = 0.

20



The light-cone wave function of the ηc is parameterized as in (5) 4. Fol-
lowing [42, 43] the distribution amplitude is chosen as

Φηc = N(σηc)xx̄ exp
[

− σ2
ηcM

2
ηc

(x− 1/2)2

xx̄

]

(35)

where N(σηc) is determined from the usual requirement
∫ 1
0 dxΦηc(x) = 1.

The distribution amplitude exhibits a pronounced maximum at x = 1/2 and
is exponentially damped in the end-point regions. It describes an essentially
non-relativistic cc̄ bound state; quark and antiquark approximately share
the meson’s momentum equally. In the hard scattering amplitude the charm
quark mass occurs while in the distribution amplitude the meson mass is
used. This property of the latter distribution amplitude is a model assump-
tion which contributes to the theoretical uncertainty of the results. In the
sense of the non-relativistic QCD [44] 2mc and Mηc are equivalent. In (1)
the Sudakov factor exp [−S] can be set to 1 in the case at hand for two rea-
sons: First, due to the large, non-negligible c-quark mass the radiative QCD
corrections only produce soft divergencies but no collinear ones and, hence,
the double logs do not appear. Second, the Sudakov suppressions is mainly
active in the end-point regions (c.f. the discussion in Sect. 2) which are al-
ready strongly damped by the ηc wave function. The evolution behavior of
the ηc distribution amplitude is unknown in the range where Q2 is of order
of M2

ηc and is therefore ignored here. Consequently, also the running of the
charm quark mass is omitted. It has been checked that the effect of the this
scale dependence is anyway only on the percent level.

The normalization of the ηcγ transition form factor is fixed by its value
at Q2 = 0 which is related to two-photon decay width by

Γ[ηc → γγ] =
1

4
πα2

elmM3
ηc | Fηcγ(0) |2 . (36)

However, this decay width is experimentally not well known [48]. It is there-
fore advisable to normalize the form factor by its value at Q2 = 0 all the
more so since the recent BaBar data [20] are also presented this way. Do-
ing so the perturbative QCD corrections at Q2 = 0 to the ηcγ transition
form factor which are known to be large [45], are automatically included.

4In [42] the Gaussian (20) is taken. The version (5) is chosen here in order to be
conform with the calculations of the other form factors. The differences between the two
versions are marginal as has been mentioned previously.
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Also the αs corrections for Q
2 <∼M2

ηc [46] cancel to a high degree in the ratio

Fηcγ(Q
2)/Fηcγ(0). Even at Q2 = 10 GeV2 their effect is less than 5%, c.f.

the discussion in [42]. The uncertainties in the present knowledge of the ηc
decay constant do also not enter the predictions for this ratio.

The recent Babar data on the ηcγ form factor [20] are shown in the right
hand panel of Fig. 8. The behavior of this data has indeed been predicted
in [42]. The predictions which have been evaluated from mc = Mηc/2, are
about one standard deviation too large but with regard to the uncertainties
of the theoretical calculation, as for instance the exact value of the mass of
the charm quark, one can claim reasonable agreement between theory and
experiment. A little readjustment of the value of the charm quark mass
improves the fit. Thus, with the parameters

mc = 1.35 GeV, σηc = 0.44 GeV−1 , (37)

a perfect agreement with experiment is achieved as is to be seen in Fig. 8. For
comparison there are also shown results evaluated from mc = 1.21 GeV in
Fig. 8. As one may note from the left hand panel of Fig. 8 the ηcγ transition
form factor behaves quite differently from the other three form factors. The
large charm-quark mass slows down the approach to the asymptotic limit

Q2Fηcγ → 8fηc
3

. (38)

Finally one may examine whether the parameters quoted in (37) are plau-
sible. For this purpose the ηcγ form factor at zero momentum transfer is
evaluated. Ignoring αs-corrections as well as relativistic effects and using the
value 420 MeV for the ηc decay constant fηc , one obtains

Fηcγ(0) = 0.085 GeV−1 , (39)

and a two-photon decay width (36) of

Γ(ηc → γγ) = 8.05 keV . (40)

This result is in good agreement with the value of (7.20±2.11) keV evaluated
by the PDG [48] and with recent theoretical estimates, see for instance [47]
and references therein. The parameters quoted in (37) together with fηc =
420 MeV correspond to a normalization of the ηc distribution amplitude
N(σηc) = 8.849, to a probability of the valence Fock state of 0.82 and to
a r.m.s. k⊥ of 773 MeV. The latter two values appear reasonable for a
quarkonium state.
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6 Two virtual photons

An extension of the MPA analysis of the Pγ transition form factors to the
case of two virtual photons can be found in [49, 50, 51]. As an example the
πγ∗ form factor will be discussed here. Denoting the photon virtualities by
Q2 and Q′ 2 and introducing the variables

Q
2
=

1

2
(Q2 +Q′ 2) , ω =

Q2 −Q′ 2

Q2 +Q′ 2
, (41)

one finds for the hard scattering amplitude the expression

T̂H =
2√
3π

K0(
√

1− ω(1− 2x)Qb) (42)

in b-space. In generalization of (1) the πγ∗ form factor now reads

Fπγ∗(Q
2
, ω) =

∫

dx
d2b

4π
Ψ̂π(x,−b, µF )T̂H(x,b, Q, ω, µR)e

−S(x,b,Q,µF ,µR) .

(43)
The renormalization scale is taken as

µR = max (
√

1− ω(1− 2x)Q, 1/b) (44)

in generalization of (14).

The form factor only falls off like 1/Q
2
at large Q

2
in contrast to the

Q−2Q′ −2 ∝ Q̄−4 behavior of the vector meson dominance model [52]. It
is also interesting to note that like in collinear factorization, the πγ∗ form
factor is insensitive to the higher Gegenbauer terms for Q2 ≃ Q′2; in the limit
ω → 0 it only depends on the asymptotic distribution amplitude. In fact it
has been shown [50, 51] that the n-th order Gegenbauer term contributes
to order ωn. The importance of effects from the intrinsic k⊥ diminishes as
both photons become virtual. This is evident from the quark propagator in
momentum space reading

TH ∝ [(1− ω(1− 2x))Q
2
+ k2

⊥
]−1 . (45)

As ω deviates from 1, the real photon limit, the form factor Fπγ∗ becomes
less sensitive to the end-point regions where either the quark or the antiquark

becomes soft. In the limit ω → 0 (45) reduces to [Q
2
+ k2

⊥
]−1. This is to
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be contrasted with the ω → 1 limit in which TH ∝ [xQ2 + k2
⊥
]−1, see (2).

Thus, k⊥ plays a minor role in the quark propagator provided ω is sufficiently

small. In the limit ω → 0 and large Q
2
the form factor becomes

Q
2
Fπγ∗(Q

2
, ω) =

√
2

3
fπ , (46)

a result that has been derived long ago in [53].
The measurement of the space-like πγ transition form factor is performed

in e+e− collisions with so-called single-tag events where either the electron
or the positron in the final state is detected. This method implies an integra-
tion over the spectrum of that exchanged photon which is emitted from the
undetected lepton, up to a value of, say, Q′ 2 set by an experimental cut. Ac-
tually for the BaBar experiment the cut is Q′ 2 < 0.18 GeV2. Thus, strictly
speaking, one measures the form factor for the transition from a quasi-real
photon with an effective virtuality Q′ 2

eff less than the cut value, to the pion.
The question arises how good does this measured form factor approximate
the one for the transition from a real photon to the pion. In order to examine
this issue Fπγ∗ is evaluated for small values of the ratio Q′ 2/Q2 using (43) and
the pion wave function parameters from fit (18). As one may see from Fig.
9 where the results for a sample set of Q2 values are shown, the transition
form factor depends on Q′ 2 mildly (at least within the MPA) as long as the
ratio Q′ 2/Q2 is smaller than about 0.01. At this value of the ratio of the two
virtualities the form factor is reduced by about 5% as compared to its value
at the real photon limit while at a value of 0.1 of the ratio, the form factor
is smaller by about 30%.

7 Remarks on the time-like transition form

factors

In the context of the large Q2 behavior of the transition form factors one
may also consider the recent measurement of the time-like ηγ and η′γ form
factors at s = 112 GeV2 by the BaBar collaboration [54]:

s|Fηγ | = 0.229± 0.031 GeV , s|Fη′γ| = 0.251± 0.021 GeV . (47)

Comparing these data with the predictions for the space-like form factors
which are shown in Figs. 7 and 8, one notices that for the case of the η the
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for Q2 = 25 (10, 4) GeV2 represented as solid (dashed, dotted) line. The
parameters of the pion wave function are taken from fit (18). (Colors online)

experimental time-like value is much larger than the predicted space-like one
which amounts to 0.169 at Q2 = 112 GeV2. For the case of the η′, on the
other hand, the experimental time-like value practically falls together with
theoretical result of 0.258 for the space-like form factor.

A detailed study of the pseudoscalar meson-photon transition form fac-
tors in the time-like region is beyond the scope of the present article. Within
the MPA however, one expects slightly different values for the time-like and
space-like transition form factors: The space-like propagator [xQ2 + k2

⊥
]−1

is to be replaced by [−xs + k2
⊥
− ıǫ]−1 in the time-like region or, in b-space,

K0(
√
xQb) in (3) by iπ/2H

(1)
0 (

√
xsb) with H

(1)
0 being the zeroth order Han-

kel function. The pole of the propagator now occurs within the range of
integration and in general leads to an enhancement as well as a phase of the
form factor. For the case of the electromagnetic form factor of the pion this
phenomenon has been pointed out and studied in some detail by Gousset and
Pire [55]. The analytic continuation of the Sudakov factor from the space-
like to the time-like region, which is necessary too, is not well understood.
It probably leads to an oscillating phase [55, 56].

In order to give an admittedly rough estimate of the expected size of
the time-like form factor it is followed [55] and the time-like propagator is
combined with the space-like Sudakov factor. With this receipe one finds
the absolute values 0.25 and 0.24 GeV for the scaled time-like πγ transition
form factor at s = 3 and 100 GeV2, respectively. The corresponding ratios
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of the time and space-like transition form factors are ≃ 1.9 and ≃ 1.1. For
s larger than about 5 GeV2 the time-like form factor is dominantly real,
its imaginary part contributes less than about 10% to the absolute value.
The accumulation profile of the absolute value of the time-like form factor
is displayed in Fig. 5. Although the pole of the propagator occurs in the
end-point region (at x̄ = k⊥/s) the profile is only mildly softer than that
of the space-like form factor, i.e. also the time-like form factor is mainly fed
by contributions from regions where the renormalization scale is sufficiently
large. In the light of this feature one may consider the results for the time-like
transition form factor obtained within the MPA as a tolerable estimate.

Along these lines one can also compute the ηγ- and η′γ transition form
factors in the time-like region. Using the parameters quoted in (33) one
finds that at s = 3 GeV2 the absolute values of the time-like form factors are
about a factor of 2 larger than the space-like form factors. At s = 112 GeV2

the results are s|Fηγ | ≃ 0.17 GeV and s|Fη′γ | ≃ 0.28 GeV. While for the
case of the η′ there is rough agreement with experiment (47) within errors,
is the ηγ form factor too small by about two standard deviations.

8 Concluding remarks

In this paper an analysis of the form factors for the transitions from a photon
to a pseudoscalar meson is presented. The analysis is performed within the
MPA which bases on k⊥ factorization. It is shown that due to the Sudakov
suppressions which are an important ingredient of the MPA and which repre-
sents radiative corrections in next-to-leading-log approximation summed to
all orders of perturbation theory, higher order Gegenbauer terms of the me-
son’s distribution amplitude are suppressed at low Q2. In fact, the combined
effect of the hard scattering kernel and the Sudakov factor leads to a series of
power suppressed terms which stem from the soft regions. The intrinsic k⊥-
dependence generates a second series of power corrections which in contrast
to the first series, do not grow with the Gegenbauer index. The interplay
of these two ingredients results in a remarkable feature of the MPA - the
transition form factors are only affected by the few lowest Gegenbauer terms
of the distribution amplitude, the higher ones do practically not contribute.
How many Gegenbauer terms are relevant depends on the range of Q2 consid-
ered: In the Q2 range covered by the CLEO data [5] (< 10 GeV2) it suffices
to use just the asymptotic distribution amplitude in order to fit the CLEO
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data. With the BaBar data [4, 19] at disposal, covering the unprecedented
large range 4 GeV2 < Q2 < 35 GeV2, the next or the next two Gegenbauer
terms have to be taken into account or, turning the argument around, can
be determined from an analysis of the data on the transition form factors.
Indeed this is what has been done in this work. From the present analysis
it turns out that for the case of the pion a fairly strong contribution from
a2 is required by the data while for the η and η′ much smaller deviations
from the asymptotic distribution amplitude are needed. For these cases the
results from a previous calculation within the MPA [34] are already in fair
agreement with the BaBar data, nearly perfect for the η, slightly worse for
the η′. Comparing the πγ form factor with the ηγ or more precisely the
η8γ one, one observes a strong breaking of flavor symmetry in the ground-
state octet of the pseudoscalar mesons. The difference between the two form
factors is larger than the respective decay constants. In other processes in-
volving pseudoscalar mesons such large flavor symmetry violations have not
been observed. With regard to the theoretical importance of the transition
form factors, in particular the role of collinear factorization a remeasurment,
e.g. by the BELLE collaboration, would be highly welcome.

One may wonder what the implications of the new distribution amplitudes
for the pseudoscalar mesons are for other hard exclusive processes. A detailed
investigation of this issue is beyond the scope of the present paper. It has
however been checked that for the pion’s electromagentic form factor there
is no substantial change. The perturbative contribution to it still amounts
to only about a third of the experimental value of the form factor which
is measured only at low Q2 [62]. The perturbative contribution is slightly
increasing with growing Q2 now and not as flat as in [26]. In any case for Q2

less than 10 GeV2 the differences are marginal.
Acknowledgements It is a pleasure to thank Volodya Braun and Markus

Diehl for their interest in this work and numerous valuable comments. Dis-
cussions with Vladimir Druzhinin and Andreas Schäfer are also gratefully
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A Appendix

In this appendix details of the Sudakov factor are presented. The Sudakov
exponent S which comprises the characteristic double logarithms produced
by overlapping collinear and soft divergencies (for massless quarks) has been
calculated in [14]. In axial gauge, n · A = 0, these overlaps arise in general
from two-particle reducible Feynman graphs where, before the hard interac-
tion, the gluon is exchanged between the quark and antiquark of the meson
or emitted from and reabsorbed by either the quark or the antiquark. The
Sudakov factor can therefore be analyzed indepedently of the physical pro-
cess and can be viewed as part of the meson wave function. For the case of
interest, only the two-particle reducible graphs occur anyway. As shown in
[14] for a quark-antiquark system the Sudakov exponent reads 5

S = s(x, b, Q) + s(1− x, b, Q) + 2
∫ µR

µF

dµ̄

µ̄
γq(αs(µ̄)) . (A.1)

The impact parameter b, canonically conjugated to k⊥, is the spacial sep-
aration of quark and antiquark. The Sudakov function s(ξ, b, Q) where ξ is
either x or 1− x, is given by

s(ξ, b, Q) =
1

2

∫ C2ξQ

C1/b

dµ

µ

{

2 ln
(C2ξQ

µ

)

A(C1, g(µ)) + B(C1, C2, g(µ))

}

.

(A.2)
An appropriate choice of the gauge vector n has been made in order to obtain
this result. The function B has been calculated to order αs in the MS scheme
explicitly. The function A arises from the use of the renormalization group
equation which is applied in order to absorb all the Q2 dependence into the
scale of the coupling constant. It has been calculated to order α2

s :

A =
αs

π
A(1) +

(αs

π

)2
A(2) +O(α3

s ) (A.3)

with

A(1) = CF , A(2) =
CF

2

[

67

6
− π2

2
− 5

9
nf + β0 ln (C1e

γE/2)

]

, (A.4)

5Musatov and Radyushkin [57] claim that, due to kinematical properties the Sudakov
functions should be summed as s(x, b,Q) + s(

√
x̄, b, Q) where it is assumed that the real

photon is attached to the antiquark line. Doing so the universality of the wave function
(including the Sudakov factor) is broken. This alternative possibility only leads to tiny
numerical differences in the form factor. The predictions change by less than 1%.
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where γE is the Euler constant. The constants C1 and C2 are free parameters
which may be chosen in such a way that large logarithms from higher orders
in the perturbative expansion of B are avoided. The conventional choice is

C1 = 1 , C2 =
√
2 . (A.5)

Other choices of the Ci have been discussed in [58].
The Sudakov function has been explicitly given in [14] first. Later rep-

etitions of this calculation [59, 60] led to a slightly different result which is
quoted here

s(ξ, b, Q) =
2CF

β0

[

q̂ ln
( q̂

b̂

)

− q̂ + b̂

]

+
CFβ1

β3
0

[

q̂
( ln (2q̂) + 1

q̂
− ln (2b̂) + 1

b̂

)

+
1

2
ln2(2q̂)− 1

2
ln2(2b̂)

]

+ 4
A(2)

β2
0

[

q̂ − b̂

b̂
− ln

( q̂

b̂

)

]

+
CF

β0
ln

(C2
1e

2γE−1

C2
2

)

ln
( q̂

b̂

)

. (A.6)

The variables q̂ and b̂ are defined by

q̂ = ln
( C2ξQ

2ΛQCD

)

, b̂ = ln
( C1

bΛQCD

)

. (A.7)

The last term in (A.6) represents the integrated function B. The differences
between the various results for s used earlier [14, 15, 26] and (A.6) are nu-
merically small, of the order of a few percent. It should be noted that the
last term in (A.6) is twice as large as in [58]. Also this discrepancy has little
effect on the form factor.

The integral in (A.1) arises from the application of the renormalization
group equation. It combines the effects of the renormalization group equa-
tion on the wave function (with the factorization scale µF ) and on the hard
scattering amplitude involving the renormalization scale µR. The evolution
from one scale to another is controlled by the anomalous dimension of the
quark’s wave function in axial gauge [61] γq = −αs/π + O(α2

s ). It leads to

∫ µR

µF

dµ̄

µ̄
γq(αs(µ̄)) =

2

β0

ln
ln (µ2

F/Λ
2
QCD)

ln (µ2
R/Λ

2
QCD)

(A.8)

with the help of the 1-loop result for αs. Its use is consistent with the deriva-
tion of (A.6). In particular the terms in the first line of (A.6) are calculated
from the 1-loop αs and these terms dominate the Sudakov function.
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